4 I2 d A. `; F% G8 m% V P; U
, D! { W; N: D4 q l
J7 \. h# h! k' W: ~Protein NMR Spectroscopy: Principles and Practice Summary Protein NMR Spectroscopy provides a complete introduction to solution NMR spectroscopy for determining three-dimensional structures, dynamical properties, and intermolecular interactions of proteins. The Second Edition of this now classic text provides an authoritative presentation of the theoretical principles and experimental practices required for the most sophisticated applications of solution NMR spectroscopy to explicate the molecular basis of protein function, which in turn is increasingly important for understanding mechanisms of disease and for developing novel therapeutic approaches Key Features Bloch, density matrix and product operator theoretical formalisms One-, two-, three-, and four-dimensional NMR spectroscopy Semiclassical relaxation theory and chemical exchange effects Practical aspects of experimental NMR spectroscopy Proton homonuclear NMR experiments relevant for proteins and other biological macromolecules 13C and 15N heteronuclear NMR experiments relevant for proteins and other biological macromolecules Extensive examples of NMR spectra for 1H, 15N, and 13C/15N proteins ----------------------------------------- Table of Contents Acknowledgments Preface Chapter 1: Classical NMR Spectroscopy 1.1 Nuclear magnetism 1.2 The Bloch equations 1.3 The one-pulse NMR experiment 1.4 Linewidth 1.5 Chemical shift 1.6 Scalar coupling and limitations of the Bloch equations Chapter 2: Theoretical Description of NMR Spectroscopy 2.1 Postulates of quantum mechanics 2.1.1 The Schr?dinger equation 2.1.2 Eigenvalue equations 2.1.3 Simultaneous eigenfunctions 2.1.4 Expectation value of the magnetic moment 2.2 The density matrix 2.2.1 Dirac notation 2.2.2 Quantum statistical mechanics 2.2.3 The Liouville-von Neumann equation 2.2.4 The rotating frame transformation 2.2.5 Matrix representations of the spin operators 2.3 Pulses and rotation operators 2.4 Quantum mechanical NMR spectroscopy 2.4.1 Equilibrium and observation operators 2.4.2 The one-pulse experiment 2.5 Quantum mechanics of multispin systems 2.5.1 Direct product spaces 2.5.2 Scalar coupling Hamiltonian 2.5.3 Rotations in product spaces 2.5.4 One-pulse experiment for a two-spin system 2.6 Coherence 2.7 Product Operator Formalism 2.7.1 Operator spaces 2.7.2 Basis operators 2.7.3 Evolution in the product operator formalism 2.7.3.1 Free precession 2.7.3.2 Pulses 2.7.3.3 Practical Points 2.7.4 Single quantum coherence and observable operators 2.7.5 Multiple quantum coherence 2.7.6 Coherence transfer and generation of multiple quantum coherence 2.7.7 Examples of product operator calculations 2.7.7.1 The spin-echo 2.7.7.2 INEPT 2.7.7.3 Refocussed INEPT 2.7.7.4 Spin-state selective polarization transfer 2.8 Averaging of the spin Hamiltonian and residual interactions Chapter 3: Experimental Aspects of NMR Spectroscopy 3.1 NMR instrumentation 3.2 Data acquisition 3.2.1 Sampling 3.2.2 Oversampling and digital filters 3.2.3 Quadrature detection 3.3 Data Processing 3.3.1 Fourier transformation 3.3.2 Data manipulations 3.3.2.1 Zero-filling 3.3.2.2 Apodization 3.3.2.3 Phasing 3.3.3 Signal-to-noise ratio 3.3.4 Alternatives to Fourier transformation 3.3.4.1 Linear prediction 3.3.4.2 Maximum entropy reconstruction 3.4 Pulse techniques 3.4.1 Off-resonance effects 3.4.2 B1 inhomogeneity 3.4.3 Composite pulses 3.4.4 Selective pulses 3.4.5 Phase-modulated pulses 3.4.6 Adiabatic pulses 3.5 Spin decoupling 3.5.1 Spin decoupling theory 3.5.2 Composite pulse decoupling 3.5.3 Adiabatic spin decoupling 3.5.4 Cycling sidebands 3.5.5 Recommendations for spin decoupling 3.6 B0 field gradients 3.7 Water suppression techniques 3.7.1 Presaturation 3.7.2 Jump-return and binomial sequences 3.7.3 Spin lock and field gradient pulses 3.7.4 Post-acquisition signal processing 3.8 One-dimensional proton NMR spectroscopy 3.8.1 Sample preparation 3.8.2 Instrument setup 3.8.2.1 Temperature calibration 3.8.2.2 Tuning 3.8.2.3 Shimming 3.8.2.4 Pulse width calibration 3.8.2.5 Recycle delay 3.8.2.6 Linewidth measurement 3.8.3 Referencing 3.8.4 Acquisition and data processing 3.8.4.1 One-pulse experiment 3.8.4.2 Hahn-echo experiment Chapter 4: Multi-dimensional NMR Spectroscopy 4.1 Two-dimensional NMR spectroscopy 4.2 Coherence transfer and mixing 4.2.1 Through-bond coherence transfer 4.2.1.1 COSY-type coherence transfer 4.2.1.2 TOCSY transfer through bonds 4.2.2 Through space coherence transfer 4.2.3 Heteronuclear coherence transfer 4.2.4 Coherence transfer under residual dipolar coupling Hamiltonians 4.3 Coherence selection, phase cycling and field gradients 4.3.1 Coherence level diagrams 4.3.2 Phase cycles 4.3.2.1 Selection of a coherence transfer pathway 4.3.2.2 Saving time 4.3.2.3 Artifact suppression 4.3.2.4 Limitations of phase cycling 4.3.3 Pulsed field gradients 4.3.3.1 Selection of a coherence transfer pathway 4.3.3.2 Artifact suppression 4.3.3.3 Limitations of pulsed field gradients 4.3.4 Frequency discrimination 4.3.4.1 Frequency discrimination by phase cycling 4.3.4.2 Frequency discrimination by pulsed field gradients 4.3.4.3 Aliasing and folding in multi-dimensional NMR spectroscopy 4.4 Resolution and sensitivity 4.5 Three and Four dimensional NMR Spectroscopy
|
+ P* |+ p0 n4 [0 z9 a8 t" M7 |' g$ m: {3 \* _; r2 r
$ l/ Z3 v9 r( ~7 s$ J8 I+ X7 l( P4 B4 _: M$ {6 \) X1 i- [5 ^# S
2008-8-27 18:24:31 |
' x" T& f' c2 Q' d9 p5 Y& k8 G' R4 d% p# y( F3 @
! O) M3 f( m% i0 `: N. r0 G7 W
: N5 c; [" i D9 X9 Z f+ A |
0 j J& T# a/ @4 {1 N; t6 e) z- X+ P
7 n6 a* q5 I# C. h; o* l: K+ z2 s, K/ Y3 l5 c
) a; e/ h( t6 ?* o Q( }
4 }8 K0 Y$ ]+ o) ^" Z: y0 J" j+ O7 g4 K- M: d, J% A
6 {6 m* P0 o, y% u$ {
" U7 z% [8 n! s! K# E) n
2 \. y$ l! }' U0 S7 J u# R7 S: a! S! O0 _8 X5 s
) ~/ Z( |$ u$ |- C& V1 a s0 [
6 @' ^9 O$ U9 P% B
; @- M" y, Z6 o2 b; I0 H5 s8 w1 e- F
+ m e; N+ V9 ?8 e" \4 u1 O
|
9 u) m Q3 y* O/ y |
6 H1 m' t2 _ |1 k* C8 m; u; {& E9 V6 X. X9 ?% u9 z. ` p
| |
% m4 N9 F5 U4 `1 L. Y | ; z* i" o0 A; d9 B' q% t8 c3 u
3 S$ ]; o7 h4 J5 f5 h | / h' H/ c. l3 J6 j1 p! W" p
0 b" S9 D. d6 e7 i |
* e L4 p2 e- Z- q" I6 h+ {% J! C! X5 X& X! \4 X
| + g1 G, m$ N7 i% m+ ]
, i/ P4 g* k. V% t# z. G/ {1 n& I; H7 s
| ( q- b/ u5 s. ^ R
, O4 Q. B0 |; z$ n& Y( x
* h. {9 u9 q1 U* c3 E
* X4 L" W! r" e( j# [2 V
' b, D' W) t: X! }& A( d. l' u. f) F6 h
Chapter 5: Relaxation and Dynamic Processes 5.1 Introduction and survey of theoretical approaches 5.1.2 Relaxation in the Bloch equations 5.1.2 The Solomon Equations 5.1.3 Random-phase model for transverse relaxation 5.1.4 Bloch, Wangsness and Redfield Theory 5.2 The Master Equation 5.2.1 Interference Effects 5.2.2 Like spins, unlike spins, and the secular approximation 5.2.3 Relaxation in the rotating Frame 5.3 Spectral Density Functions 5.4 Relaxation Mechanisms 5.4.1 Intramolecular dipolar relaxation for IS spin system 5.4.2 Intramolecular dipolar relaxation for scalar coupled IS spin system 5.4.3 Intramolecular dipolar relaxation for IS spin system in the rotating frame 5.4.4 Chemical shift anisotropy and quadrupolar relaxation 5.4.5 Relaxation interference 5.4.6 Scalar relaxation 5.5 Nuclear Overhauser Effect 5.6 Chemical Exchange Effects in NMR Spectroscopy 5.6.1 Chemical exchange for isolated spins 5.6.2 Qualitative effects of chemical exchange in scalar coupled systems Chapter 6: Experimental 1H NMR Methods 6.1 Assessment of the 1D 1H Spectrum 6.2 COSY-type experiments 6.2.1 COSY 6.2.1.1 Product operator analysis. 6.2.1.2 Experimental protocol 6.2.1.3 Processing 6.2.1.4 Information content 6.2.1.5 Quantitation of scalar coupling constants in COSY spectra 6.2.1.6 Experimental variants 6.2.2 Relayed COSY 6.2.2.1 Product operator analysis. 6.2.2.2 Experimental protocol 6.2.2.3 Processing. 6.2.2.4 Information content. 6.2.3 Double-relayed COSY 6.3 Multiple Quantum Filtered COSY 6.3.1 2QF-COSY 6.3.1.1 Product operator analysis. 6.3.1.2 Experimental protocol 6.3.1.3 Processing. 6.3.1.4 Information content 6.3.2 3QF-COSY 6.3.2.1 Product operator analysis 6.3.2.2 Experimental protocol and processing 6.3.2.3 Information content 6.3.3 E-COSY 6.3.3.1 Product operator analysis 6.3.3.2 Experimental protocol 6.3.3.3 Processing 6.3.3.4 Information content 6.3.3.5 Experimental variants 6.4 Multiple Quantum Spectroscopy 6.4.1 2Q spectroscopy 6.4.1.1 Product operator analysis 6.4.1.2 Experimental protocol 6.4.1.3 Processing 6.4.1.4 Information content 6.4.2 3Q spectroscopy 6.4.2.1 Product operator analysis 6.4.2.2 Experimental protocol and processing 6.4.2.3 Information content 6.5 TOCSY 6.5.1 Product operator analysis 6.5.2 Experimental protocol 6.5.3 Processing 6.5.4 Information content 6.5.5 Experimental variants 6.6 Cross-relaxation NMR experiments 6.6.1 NOESY 6.6.1.1 Product operator analysis. 6.6.1.2 Experimental protocol 6.6.1.3 Processing. 6.6.1.4 Information content. 6.6.1.5 Experimental variants. 6.6.2 ROESY 6.6.2.1 Product operator analysis 6.6.2.2 Experimental protocol and processing 6.6.2.3 Information content 6.6.2.5 Experimental variants 6.7 1H 3D experiments 6.7.1 Experimental protocol 6.7.2 Processing 6.7.3 Information content 6.7.4 Experimental variants Chapter 7: Heteronuclear NMR Experiments 7.1 Heteronuclear correlation NMR spectroscopy 7.1.1 Basic heteronuclear correlation experiments 7.1.1.1 The HMQC experiment 7.1.1.2 The HSQC experiment 7.1.1.3 The constant-time HSQC experiment 7.1.1.4 Comparison of HMQC and HSQc spectra 7.1.2 Additional considerations in HMQC and HSQC experiments 7.1.2.1 Phase cycling and artifact suppression 7.1.2.2 13C scalar coupling and multiplet structure 7.1.2.3 Folding and aliasing 7.1.2.4 Processing HMQC and HSQC experiments 7.1.3 Decoupled HSQC, Sensitivity-enhanced HSQC, and TROSY experiments 7.1.3.1 The decoupled HSQC experiment 7.1.3.2 Sensitivity-enhanced HSQC 7.1.3.3 TROSY experiment 7.1.3.4 Comparison of decoupled HSQC, PEP HSQC, and TROSY experiments
| | |
9 B$ y1 e7 z/ b% c0 @[此贴子已经被作者于2009-3-7 8:58:39编辑过]
0 Q* I8 Y! {: k+ n |